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Abstract

Background:The interaction of different brain regions is supported by
transient synchronization between neural oscillations at different frequen-
cies. Different measures based on synchronization theory are used to as-
sess the strength of the interactions from experimental data. One method
of estimating the effective connectivity between brain regions, within the
framework of the theory of weakly coupled phase oscillators, was imple-
mented in Dynamic Causal Modelling (DCM) for phase coupling (Penny
et al., 2009). However, the results of such an approach strongly depend
on the observables used to reconstruct the equations (Kralemann et al.,
2008). In particular, an asymmetric distribution of the observables could
result in a false estimation of the effective connectivity between the net-
work nodes.

New method:In this work we built a new modelling part into DCM for
phase coupling, and extended it with a distortion function that accommo-
dates departures from purely sinusoidal oscillations.

Results:By analysing numerically generated data sets with an asym-
metric phase distribution, we demonstrated that the extended DCM for
phase coupling with the additional modelling component, correctly esti-
mates the coupling functions.

Comparison with existing methods:The new method allows for different
intrinsic frequencies among coupled neuronal populations and provides
results that do not depend on the distribution of the observables.

Conclusions:The proposed method can be used to analyse effective
connectivity between brain regions within and between different frequency
bands, to characterize m:n phase coupling, and to unravel underlying
mechanisms of the transient synchronization.
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1 Introduction

Complex behavior, e.g., a motor task, requires coordinated neural activity at
different levels of the brain. The interaction of an ensemble of neurons within a
specific brain region is reflected in measurements of electrophysiological exper-
iments by oscillatory activity. Data suggest that the interaction between brain
regions causes synchronization of these emerging oscillatory activities (Buzsáki
et al., 2004; Schnitzler and Gross, 2005; Buzsáki, 2006). This synchronization
has transient dynamics and occurs from small distances within a brain region
up to long-ranges between distant brain regions (Varela et al., 2001; van Ede
et al., 2018). The magnitude of this synchronization can quantify the interac-
tions between brain regions. There are many ways of analysing the connectivity
of a network of interconnected brain regions using bivariate analysis of the
phases of the oscillatory signals (Greenblatt et al., 2012), such as the phase
locking value (PLV) (Lachaux et al., 1999), phase transient entropy (Lobier
et al., 2014), phase-amplitude coupling (Tort et al., 2010), and cross-frequency
coupling (Hyafil et al., 2015). The measures used in these studies are based
on the theory of synchronization and the theory of weakly coupled oscillators
(Hoppensteadt and Izhikevich, 1997; Pikovsky et al., 2001).

Another approach measuring connectivity based on the reconstruction of the
dynamics of phase interactions from experimental data was suggested first by
Rosenblum and Pikovsky (2001). In this method the values of the phases of
experimentally measured signals and their derivatives are used to reconstruct
the effective phase connectivity and phase dynamics. As a result, one obtains
not only the structure of a network and the directionality of its edges, but
also an analytic form of the interaction function between the nodes. A similar
concept was realized in several recent studies to reconstruct the phase dynamic
equations using Bayesian inference (Stankovski et al., 2012; Duggento et al.,
2012; Stankovski et al., 2015).

Penny et al. (2009) presented a new variant of Dynamic Causal Modelling
(DCM) for the analysis of phase-coupled data. Dynamic causal modelling
(DCM) is a Bayesian model selection and inversion framework for identify-
ing the structure and directed connectivity among brain regions from mea-
sured time series (Friston et al., 2003). This framework uses variational Bayes
to find the functional architecture, the implicit directed connectivity and, in
some instances, the hidden neuronal states that best explain the data. This
rests upon the inversion of a generative model using data obtained by a wide
range of measurement techniques, such as functional magnetic resonance imag-
ing (fMRI), electroencephalography (EEG), magnetoencephalography (MEG),
and local field potentials (LFPs) (Stephan et al., 2010; Daunizeau et al., 2011).

Most of the research on phase analysis relies on the direct association of
the phases of the signals with the phases used in the theoretical description of
weakly coupled oscillators. This is a plausible assumption. However, Kralemann
et al. (2007, 2008) showed that the phases of the signals measured in experi-
ments are not uniquely defined and an asymmetric distribution of the measured
phases (e.g. non-sine form of the signals) can lead to systematic errors in the
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reconstruction procedure of the coupling. Moreover, the impact of this issue has
been explored in recent studies, where it was demonstrated that a non-sine form
of the signal can lead to spurious connections (Belluscio et al., 2012; van Driel
et al., 2015; Scheffer-Teixeira and Tort, 2016; Lozano-Soldevilla et al., 2016).

Kralemann et al. (2008) suggested a solution for this problem by introducing
a transformation from an arbitrary measured phase to an uniquely defined phase
variable. Moreover, they could show that using this unique phase variable an
invariant description of the phase dynamics can be obtained. In subsequent
studies the authors developed a toolbox 1 to analyse the dynamics of a network
of coupled phase oscillators (Kralemann et al., 2011) and extended the method
from pairwise synchronization cases to triplet synchronization cases, which take
into account the mutual phase interactions of three regions (Kralemann et al.,
2013, 2014).

Since DCM for phase-coupled data (Penny et al., 2009) is not designed to
reconstruct network architectures when the measured phases have asymmetric
distributions, we, in this work, extended DCM for phase coupling by imple-
menting a transformation to unique phase variables. Moreover, the extension
is adapted to measure the interaction function within and between different
frequencies.

The paper is organized as follows. We first briefly introduce the theoreti-
cal framework of the synchronization of weakly coupled phase oscillators and
explain the procedure of the reconstruction of the phase dynamics from exper-
imental data. In the next section we explain the difference of the dynamics of
a uniquely defined phase variable and of a phase measured in an experiment.
Further we give a brief description of DCM, its parts, and explain the details
of the version of the DCM for phase coupling (Penny et al., 2009). In Section
2.6 we introduce our model and the new extension to DCM for phase coupling
and discuss several technical and theoretical aspects of our approach. Finally,
we test the new extension of DCM on synthetic data using a model of coupled
phase oscillators and the neural mass model.

2 Methods

2.1 Transient synchronization between brain regions

Let us assume we are measuring the activity of two distant brain regions during
the performance of some action (e.g. a motor task) as shown in Fig. 1(a)(1).
Consider that these measured activities have oscillations as the result of simul-
taneous action of many neurons in both regions (2). The regions are transiently
synchronous if after filtering around a given frequency band the oscillatory time
courses have a similar form during a short period of time (3). One can estimate
the magnitude of synchrony when the time courses are separated into ampli-
tude and phase. The phase of the signals can be calculated by measuring the
angle θ after Hilbert or wavelet transformation (4). At full synchronization the
difference between the phases is constant or equal to zero. However, during
a period of transient synchronization the interaction time is not long enough
to set the phases of the signals to a constant difference. The dynamics of the

1The toolbox ”Data Analysis with Models Of Coupled Oscillators (DAMOCO)” can be
found here http://www.stat.physik.uni-potsdam.de/~mros/damoco.html
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phases during these transient synchronizations can be described by the model
of weakly coupled oscillators, which we discuss in the next sections.

Figure 1: Measuring synchronization. (a) Scheme of the analysis of the con-
nectivity between distant brain regions using the framework of weakly coupled
oscillators. See text for details. (b) The trajectories of the trials on the (ϕ1, ϕ2)
surface (torus). (c) The coupling function q12(ϕ1, ϕ2) represented as a surface.

2.2 Weakly coupled oscillators

The theory of synchronization considers a model of weakly coupled phase os-
cillators (Kuramoto, 1984; Pikovsky et al., 2001). The theory shows that the
dynamics of a self-sustained oscillatory system can be reduced to the ones of
phase oscillators. Moreover, the theory suggests that the phase dynamics can
capture the interaction between coupled oscillatory systems, since the phase,
in contrast to the amplitude, can be adjusted through a very weak interaction.
In this work we do not perform a phase reduction and the derivation of the
equation for weakly coupled oscillators. However, we briefly introduce the main
concepts necessary for this work.

If we consider N uncoupled phase oscillators, then every oscillator would
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just rotate with its natural frequency ω

ϕ̇i = ωi, i = 1 . . .N, (1)

where ϕi is the phase of the oscillator i. In the presence of coupling between
the oscillators the equation reads

ϕ̇i = ωi + Fi(ϕ1, . . . , ϕN ), (2)

where the coupling function Fi, in general, depends on the phases of all oscilla-
tors. We consider here a simpler case with only pairwise coupling between the
oscillators

ϕ̇i = ωi +

N
∑

j=1,j 6=i

qij(ϕi, ϕj). (3)

The function qij(ϕi, ϕj) is called the coupling function or the phase interaction

function between the region i and j. The Fourier series of the periodic coupling
function qij(ϕi, ϕj) has no constant term and no term that depends only on ϕi

– the phase of the oscillator the coupling function acts on.

2.3 Reconstruction of the effective phase connectivity

After reducing the oscillatory systems to weakly coupled phase oscillators, the
interaction between brain regions is equivalent to the effective connectivity be-
tween phase oscillators (Fig. 1(a)(5)), which can be completely described by
the coupling functions qij (Stankovski et al., 2017). The procedure of the re-
construction of the effective phase connectivity is based on finding the coupling
functions qij for every pair of oscillators.

If we have the time series of phases for all oscillators, then, by calculating
the derivative of the phases, we can find the right hand side of Eq. (3), i.e. the
coupling functions (Rosenblum and Pikovsky, 2001). This can be explained by
the following example for two phase oscillators (Fig. 1(a)(6)). The values of the
phases from all trials can be presented on the surface of the plane (torus) (ϕ1, ϕ2)
as shown in Fig. 1(b). The procedure of reconstruction of the coupling function
is then equivalent to finding the surface qij(ϕi, ϕj) by calculating derivatives of
the phase for every data point and subtracting the mean frequencies ω1 and ω2

(Fig. 1(c)). However, for a successful reconstruction of the coupling function
the data points should fill the surface of the plane (torus) (ϕi, ϕj) (Fig. 1(b)).
This is not the case in full synchronization, when the trajectories of the different
trials merge to a line (an attractor). Therefore, the method of reconstruction of
the coupling functions is applicable only for a weak coupling between oscillators
and/or for a transient synchronization. In the latter case the shortly active
coupling is not enough to collapse all the trajectories to the attractor.

2.4 Observable phase vs theoretical phase

It was shown by Kralemann et al. (2007, 2008) that the phases measured in
experiments obey the theoretical expression Eq. (3) only in exceptional cases
and a special technique is needed to reconstruct the phase dynamics from the
data. Following Kralemann et al. (2008) we briefly introduce the main idea of
this technique.
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The expression Eq. (3) implies that without any coupling (qij = 0) the phase
oscillator ϕi rotates with constant frequency ωi. If we present the phase oscilla-
tor as a limit cycle, then the case without coupling corresponds to an oscillator
with a circular limit cycle centered at the origin (Fig. 2(a)) and with a time
course of one variable (e.g. y) in the form of a sine-wave function (Fig. 2(b)).
We specify this phase as the theoretical or true phase. In the absence of coupling
the theoretical phase grows linearly with a constant speed ω = 2π/T , where T is
the period (Fig. 2(c)). Any non-linearity in growth is induced only by coupling.

In an experiment one measures a scalar observable that is a projection of the
dynamics of a high dimensional system. For example, the dynamics of a two-
dimensional system on a limit cycle as presented in Fig. 2(d) could be measured
in experiments as a regular oscillation of a variable y as shown in Fig. 2 (e).
In practice, the procedure is reversed: a corresponding two-dimensional limit
cycle (Fig. 2 (d)) is reconstructed from the time series of the scalar observable
(Fig. 2 (e)) using a phase estimation method, e.g. the Hilbert transformation
(Pikovsky et al., 2001). The ”phases” of the analysed system can be extracted
by measuring the angle θ in the limit cycle (Fig. 2 (d)). We refer to this phase as
an observable phase (also called proto-phase by Kralemann et al. (2007, 2008)).
The observable phase θ grows monotonically with the same period as the time
series it is extracted from (Fig. 2 (f)). However, since the reconstructed limit
cycle is generally not circular as in Fig. 2 (a) and depends on the method
used to reconstruct it, the observable phase θ grows non-linearly even without
coupling (!). Therefore, this non-linearity can cause spurious couplings in the
reconstruction procedure of the coupling functions. Moreover, the reconstructed
limit cycle and, respectively, the observable phase is not unique. They depend
on the scalar observable and on the methods of limit cycle reconstruction and
phase estimation, e.g. the Hilbert transformation, the Wavelet transformation,
the Poincare section method (Kralemann et al., 2008).

The non-linear growth of the observable phase plays a crucial role in the
reconstruction of the coupling function. To demonstrate this, let us consider
two coupled oscillators with phases ϕ1 and ϕ2 that obey the equation of the
form Eq. (3) where the coupling functions are qij(ϕ1, ϕ2) = ai sin(ϕi−ϕj). If we
numerically integrate Eq. (3) with different initial conditions we obtain the time
series ϕ1(t) and ϕ2(t). As was discussed above, by calculating the derivatives of
these time series we can obtain the right hand side of Eq. (3), i.e. the coupling
functions in the form of surfaces shown in Fig. 2 (g) and (j). Now let us assume
that we are measuring not ϕ1(t) and ϕ2(t), but the observable phases θ1 and
θ2, which have non-linear relations to ϕ1 and ϕ2 as shown in Fig. 2 (h) and (k).
Using these relations we can find the time series of the observable phases θ1(t)
and θ2(t). If we reconstruct the coupling function from the observable phases
with the procedure mentioned above, we obtain the coupling functions shown
in Fig. 2 (i) and (l). As one can see, these surfaces are drastically different
from the original ones. Thus, even a small deviation from the linear relation
between the observed and the theoretical phases can cause wrong estimations
of the coupling functions. Since the observable phases are not uniquely defined
this effect can lead to systematic errors in the reconstruction procedure of the
coupling functions.

Kralemann et al. (2008) addressed this problem and suggested a transfor-
mation that is nothing else but the non-linear relation between the observable
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Figure 2: Theoretical phase, observable phase, and transformations between
them. (a)–(c) The theoretical phase. (d)–(f) The observable phase. (g)–(l) The
effect of non-linear relation between observable and theoretical phases. (m)–(p)
Forward and inverse transformations and relations between them. See text for
details.
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and the theoretical phases. This transformation can be found from the relation

dϕ

dt
=

dϕ

dθ

dθ

dt
= σ(θ)

dθ

dt
. (4)

If we take into account that the theoretical phase ϕ grows with constant speed
dϕ/dt = ω0, then

σ(θ) = ω0
dt

dθ
(θ). (5)

Thus, the function σ(θ) is inversely proportional to the velocity of θ and can
be approximated by the probability distribution density of the observable phase
θ. This is demonstrated in Fig. 2(m) and (n). The time course of a non-linear
growing observable phase θ is shown in Fig. 2(m). The probability distribution
density constructed from the time course gives us the approximation of σ(θ)
(Fig. 2(n)).

Using this fact one can find the function σ(θ) from the time series of the
observable phase. The 2π-periodic function σ(θ) can be represented as a Fourier
series

σ(θ) =
∑

n

Sne
inθ, (6)

where the Fourier coefficients Sn are

Sn =
1

T

∫ T

0

e−inθ̃(t)dt, (7)

where θ̃(t) is the time series of the observable phase measured over a time interval
T . The normalization condition for the probability density requires S0 = 1. As
it was shown by Kralemann et al. (2008), the approximation Eq. (6) is also valid
in the presence of a weak coupling (qij 6= 0) if the time series is long enough to
fulfill the ergodicity assumption.

By integrating σ(θ) with an additional condition ϕ(θ = 0) = 0 we obtain

ϕ = Φ(θ) =

∫ θ

0

σ(θ′)dθ′. (8)

Here the function Φ(θ) is the transformation function from the observable phase
θ to the theoretical phase ϕ (Fig. 2(o)). We call it the inverse transformation

function (Kralemann et al. (2008) referred to it as the transformation from

protophase to phase).
In the same manner we can define

ρ(ϕ) =
dθ

dϕ
(ϕ), (9)

which also obeys the normalization condition
∫ 2π

0
ρ(ϕ)dϕ = 1. The integral of

ρ(ϕ) is a transformation from the theoretical phase ϕ to the observable phase
θ, with the initial condition θ(ϕ = 0) = 0:

θ = Θ(ϕ) =

∫ ϕ

0

ρ(ϕ′)dϕ′. (10)

We call this function the forward transformation function (Fig. 2(o) and (p)).
It is obvious, that the inverse transformation function Φ(θ) is an inverse of the
forward transformation function Θ(ϕ).
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In the work presented here we implement this transformation in DCM for
phase coupling. In the next section we explain the details of DCM in general
and, more specifically, the version of DCM for phase coupling.

2.5 Short description of DCM

Dynamic Causal Modelling (DCM) was first presented in Friston et al. (2003)
as a tool for the analysis of effective connectivity using fMRI data. More re-
cently DCM was extended to EEG, MEG, LFPs, and functional near-infrared
spectroscopy (fNIRS) (David et al., 2006; Chen et al., 2008; Stephan et al.,
2008; Marreiros et al., 2008; Moran et al., 2009; Chen et al., 2012; Tak et al.,
2015). DCM can be implemented with open-source software within the Statis-
tical Parametric Mapping (SPM) software (Friston et al., 2007a).

Although there are different variants of DCM they all have a common general
structure (Daunizeau et al., 2011). In Fig. 3 we present the structure of DCM
as a diagram, where only components of DCM relevant to this work are shown.
A more detailed overview of the DCM structure can be found in (Friston et al.,
2003; Stephan et al., 2010; Daunizeau et al., 2011; van Wijk et al., 2018).

Figure 3: The general scheme of Dynamic Causal Modelling (DCM). See text
for details.

The basic idea of DCM is to estimate the structure of neural interactions
from experimentally measured brain activity by means of Bayesian inference.
In this inferential framework, the brain is considered to be a non-linear dynamic
system and represented as a directed graph with nodes and edges. The nodes
correspond to source activities mediated by effective connectivity - the edges.

DCM can either be used to fit raw data or some pre-processed observables
(Fig. 3(1) and (2)) that are chosen to make the inversion as efficient as possible.
For example in fMRI, the observables are BOLD signals in selected regions of
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interest (Friston et al., 2003). For EEG/MEG, it is possible to fit the time series
in sensor space - or treat reconstructed time series in source space as virtual
electrodes (c.f., local field potentials). This is the approach taken in DCM for
evoked responses (David et al., 2006) and in DCM for induced responses (Chen
et al., 2008).

Later, the observables obtained from the experiment are ”compared” with
the observables generated by DCM by means of a non-linear dynamic system.
Following Daunizeau et al. (2011) we call the part of DCM by which it generates
the observed data the modelling component (Fig. 3(3)).

In the modelling component the source activity is defined by hidden (neural)
states (x). The hidden states change depending on the current state of the sys-
tem, the experimental manipulations (u) and the unknown evolution parameters
(pf ). This dependence is described by the evolution equations ẋ = f(x, u, pf ).
The evolution parameters pf and the structure of the evolution function f en-
tirely determine the nodes and the edges of the graph and how the edges in-
fluence the dynamics of the system. Moreover, DCM allows to consider several
network structures (graphs) simultaneously and to chose the one which best fits
the data, using Bayesian model comparison.

The systems’ hidden states (x) generated by the evolution equations are then
mapped to observable variables (y) using the observation equations y = g(x, pg),
where pg are the unknown observation parameters (Fig. 3(3)).

The parameters of the evolution and observation equations are estimated
in the statistical component of DCM (Fig. 3(4)) by means of Bayesian inver-
sion (Friston et al., 2003; Daunizeau et al., 2011). This part of DCM has an
identical scheme in all DCM variants with small modifications optimized for
special cases. Under the Bayesian framework, the modelling component is used
to derive a likelihood function, which determines how likely it is to observe a
specific set of observations y for a given set of parameter values p = (pf , pg).
The parameters of the modelling component p are assumed to have a distribu-
tion q(p) in the form of the Laplacian (i.e. Gaussian) approximation. Thus, the
posterior density is q(p) = N(µ,Σ). The values of the conditional mean µ and
the conditional covariance Σ are updated in an iterative form using Variational
Bayes, which resembles the Expectation-Maximisation (EM) algorithm 2 (Fris-
ton et al., 2007b). Here, as a bound approximation to log model evidence, a free
energy function F (q, λ) is introduced 3. In the E-step of the EM algorithm the
free energy F is maximized with respect to q 4 and in the M-step with respect to
the precision parameter λ. The iteration continues until the free energy reaches
its maximum. Using Bayesian model selection, DCM allows the comparison of
different model structures (Penny et al., 2004). More details of the estimation
scheme are given in (Friston, 2002; Friston et al., 2003, 2006).

For the sake of simplicity the statistical component of DCM is presented in
the diagram in Fig. 3 as a conditional operation (4), which compares the experi-
mentally obtained observables with the ones generated by the modelling compo-
nent. The interactive update of the parameter values using the EM algorithm

2Although Bayesian model inversion in DCM is often described in terms of an EM scheme, it
actually uses Variational Laplace; namely, variational updates under a fixed form (Gaussian)
assumption about the posterior density. This is slightly more sophisticated than EM and
enables uncertainty quantification about system and state noise levels.

3Negative free energy is a lower bound of the log model evidence.
4Maximizing the negative free energy.
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is displayed by the feedback-loop arrow from the statistical to the modelling
component (Fig. 3(5)).

With the statistical component implemented in universal form, DCM pro-
vides a powerful tool for connectivity analyses in different biophysical models.
The same type of measurements of brain activity can be analysed with different
generative models, such as the two EEG/MEG extensions of DCM for evoked
potentials (David et al., 2006) and for induced responses (Chen et al., 2008).

Penny and colleagues (2009) presented an extension of DCM to the analysis
of phase-coupled data, where the generative model was based on weakly coupled
phase oscillators. The network of weakly coupled phase oscillators was described
by the following evolution equations

ϕ̇i = ω +

Nr
∑

j

Γij(ϕi − ϕj), i = 1 . . .N, (11)

where ω is the intrinsic frequency of the oscillators, Nr is the number of regions
and Γij(ϕ) is the phase interaction function. In the DCM for the phase-coupled
data, the intrinsic frequencies of the oscillators were assumed to be the same and
only intra-frequency couplings were considered. Therefore, the phase interaction
function Γij(ϕ) was a function of the phase difference and was approximated by
Fourier series as follows:

Γij(ϕ) = −

Ns
∑

n=1

asijn sin(nϕ) +

Nc
∑

n=1

acijn cos(nϕ), (12)

where Ns and Nc are the number of sine and cosine terms. The Fourier coeffi-
cients asijn and acijn are assumed to be positive and to change with respect to the
modulatory inputs. The strength of the connection between any two regions is
defined as the norms of the coefficients ‖a‖. The observation equations in Penny
et al. (2009) are defined to be linear and the observed time series in trial k in
region i is the unwrapped phase variable ϕki. Therefore, the initial values for
the evolution equations are taken to be equal to the initial phases extracted
from experimental measurements.

As we discussed in the previous section, the dynamics of phases measured
in experiments differ from the theoretical ones, such as Eqs. (11) and (12). Ne-
glecting this fact can lead to systematic errors in the estimation of the coupling
functions. Thus, taking the modelling part of (Penny et al., 2009) as the basis,
we here aim at resolving this problem by extending the modelling component
of DCM. In the next section we present this extension.

2.6 The extended modelling component

The scheme of the DCM modelling component (Fig. 3(3)) itself suggests how
the problem with the observable phase can be resolved. The non-linear relation
between the observable and the theoretical phases can be directly implemented
into the observation equations. Thus, the function g represents the forward
transformation function Θ(ϕ), which will be estimated together with the evolu-
tion equations by means of Bayesian inversion. The scheme of DCM with the
extended modelling component is shown in Fig. 4.
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As one can see, the general scheme of DCM remains the same and the main
changes concern the modelling component (Fig. 4(3)). However, non-linearity
of the observation equation requires also a subsequent change in the statistical
component. Therefore, and in contrast to the version of DCM in (Penny et al.,
2009), in the extended version of DCM we used the version of Bayesian inversion
for non-linear models with the Gauss-Newton method (Friston et al., 2007b).

Figure 4: The scheme of the extended DCM for phase coupling. See text for
details.

2.6.1 Evolution and observation equations

In our model, apart from introducing non-linear observation equations, we also
extended the evolution equations to the case with different frequencies and a
general form of the coupling function in order to allow detecting n : m syn-
chronization. The dynamical equation of the theoretical phase for a region i is
similar to Eq. (3)

ϕ̇i = ωi +

Nq
∑

j=1,j 6=i

qij(ϕi, ϕj), (13)

where Nq is the number of regions and ωi is the intrinsic frequency of the i-th
oscillator. In contrast to Eq. (11), the intrinsic frequencies ωi are generally
different for every region. The periodic coupling functions qij are approximated
using two dimensional Fourier series:

qij(ϕi, ϕj) =
∑

n,m 6=0

Q
(n,m)
ij ei(nϕi+mϕj), (14)

where n and m are integers, Q
(n,m)
ij are the Fourier coefficients, which in general

are complex numbers. We assume that the coupling functions are smooth and
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restrict the number of terms of the Fourier series to Nq. Thus, n and m changes
from −Nq to Nq, however, n 6= 0 and m 6= 0. We will discuss these conditions
below.

The dynamics of the observable phase is then obtained by the forward trans-
formation from the theoretical phase to the observable phase

θ̇i = ρi(ϕi)ϕ̇i, (15)

where ρi(ϕi) are defined as in Eq. (9). We approximate these 2π periodic
functions ρi(ϕi) by Fourier series

ρi(ϕi) = 1 +

Nρ
∑

k=1

P
(k)
i eikϕi , (16)

where P
(k)
i are complex Fourier coefficients. Note, that 1 on the right hand side

of Eq. (16) ensures the normalization condition, i.e. P
(0)
i = 1. Here we also

assume the smoothness of the transformation functions and restrict the maximal
number of terms of the Fourier series to Nρ. Thus, k changes from 1 to Nρ.

We obtain the non-linear relation between observable and theoretical phases,
i.e. the forward transformation function by integrating Eq. (15) (cf. Eq. (16) in
(Kralemann et al., 2008)):

θi = Θ(ϕi) =

∫ ϕi

0

ρ(ϕ′)dϕ′

= ϕi +
∑

k 6=0

P
(k)
i

ik

(

eikϕi − 1
)

. (17)

Since the transformation is only defined up to a constant, without loss of gen-
erality, we set here the initial condition as θ(ϕ = 0) = 0.

In the extended DCM modelling part we use Eq. (14), Eq. (16), and Eq. (17)
with real-valued Fourier coefficients for computational optimization purposes.

For this, the complex coefficients Q
(n,m)
ij are substituted by four real-valued

coefficients (pq = {a
(n,m)
ij , b

(n,m)
ij , c

(n,m)
ij , d

(n,m)
ij }) and P

(k)
i by two real-valued

coefficients (pρ = {α
(k)
i , β

(k)
i }). The corresponding formulae are given in Ap-

pendix A.

2.6.2 Assumptions of the model

As we discussed in Section 2.3, for a successful reconstruction of the coupling
function within the framework of coupled phase oscillators the coupling should

be weak. Thus, we assume that the coefficients Q
(n,m)
ij are small and the dy-

namics of the phase oscillators are far from the fully synchronized state.
The assumptions made for Eq. (14) originate from conditions that are impor-

tant for a successful reconstruction (see Rosenblum and Pikovsky, 2001; Krale-
mann et al., 2008). The first one, m 6= 0, means that the Fourier series of the
coupling function qij(ϕi, ϕj) has no terms that depend on ϕi only. The assump-
tion is that these terms are only included in the transformation function ρ(ϕ)
(Eq. (16)), thereby giving a clear separation between ρ(ϕ) and ϕ̇ in Eq. (15).
Moreover, the phase oscillator in Eq. (13) oscillates uniformly without coupling.
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The second condition n 6= 0 originates from the assumption that the coupling
term depends oscillatorily on ϕj , i.e. on the forcing phase, which indicates that
the driven oscillator is strongly synchronized with the forcing oscillator. If this
is the case then we are unable to reconstruct the coupling function (Kralemann
et al., 2008).

2.6.3 Forward vs inverse transformations

The main extension of our model is the introduction of the non-linear observa-
tion equations that reflect the transformation function. This approach differs
from the one presented by Kralemann et al. (2008). In our model we find the
forward transformation function (from ϕ to θ), whereas Kralemann et al. (2008)
estimated the inverse transformation function (i.e. from θ to ϕ, see Fig. 2(o)).
The advantage of our approach is that the parameters pρ of the observation
function are estimated together with the parameters pq of the coupling function
using Bayesian inference (Fig. 4(3a)). This results in a better approximation of
the transformation function Θ(ϕ).

However, there are drawbacks of this forward approach. First of all, the
values of the parameters of the transformation function pρ change with every
estimation step. Since we only know the initial values of the observable phases
θ0, the change of pρ affects the choice of the initial conditions for Eq. (13). We
resolve this problem by updating the initial values of ϕ0 for Eq. (13) in every step
of the Bayesian estimation by recalculating the inverse transformation function

Φ(θ) from the Fourier coefficients of the forward transformation function P
(k)
i

(Fig. 4(3a)).
Another not subtle issue is that the inverse transformation approach (Eq. (4)

and Eq. (5)) provides a unique σ(θ) function, whereas the forward transforma-
tion (Eq. (9)) does not. The reason is that noisy data points can be fitted with
different combinations of ρi(ϕi) and qij(ϕi, ϕj). To circumvent this problem,
we estimate an initial approximation of σ(θ) (and of Φ(θ), see Fig 4 (3b)) using
the probability distribution method similar to the one discussed by Kralemann
et al. (2008). Since the original method requires a long observation time period
to approximate the probability distribution, we, therefore, developed a special
method for the calculation of σ(θ) for a set of short trials (see Appendix B).

2.7 Priors

For the parameters of the evolution and observation equations we use the fol-
lowing priors

p
(

Q
(n,m)
ij

)

= N (0, σqi) , (18)

p
(

P
(k)
i

)

= N (Pi0, σρi) , (19)

p (fi) = N (fi0, σfi) , (20)

where Pi0 are the values of the Fourier coefficients Pi obtained from the initial
approximation of σ(θ) and, respectively, of ρ(ϕ) by the probability distribution
method, fi0 is the mean value of the frequency after filtering the signal within
the frequency band fi0 ±∆fi. As Penny and colleagues (2009), we choose the
variances of the parameters such that the instantaneous frequency is outside
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of the frequency band fi0 ± ∆fi with the probability less than p0 = 0.001.
However, in our model this condition refers to the instantaneous frequency of
the observable phase θ̇. Using Eq. (13), (15), and (16) we can write

θ̇i ∼ (1 +N(Ri, σρi))(N(f0, σfi) +N(0, σqi)), (21)

where Ri = ‖Pi0‖. Hence, the standard deviations of f and Qij increase (1+Ri)
times and the one of Pi increases fi0 times. By requiring the condition above
for any single term of this equation, we define the variances of the parameters
as

σfi = σqi =

(

∆i −Rfi0
(1 +Ri)zp

)2

,

σρi =

(

∆i −Rfi0
fi0zp

)2

,

where zp is the value of the quantile (or inverse cumulative distribution) function
at p0/2 = 0.0005.

3 Results

In this section we applied the extended DCM for phase coupling on synthetic
data generated by models with known parameters. We performed two tests on
the basis of two different models5. The first one is a model of weakly coupled
phase oscillators. The second is a neural mass model.

3.1 Coupled phase oscillators

In this test we aim at demonstrating the necessity of considering the non-linear
relation between the observable and theoretical phases. Therefore, we recon-
structed the coupling functions of the same system using DCM for phase cou-
pling developed by Penny et al. (2009) and its extended version derived in the
previous section. In other words, we analysed the data using a standard DCM
based upon the original neuronal model (Eqs. (11) and (12) further denoted as
DCM PC), and an extended DCM (Eqs. (13),(14), and (17) further denoted
as eDCM PC) that allows for different intrinsic frequencies at each node or
source. This extended DCM PC characterises effective connectivity in terms of
a two-dimensional phase coupling function and, crucially, allows for phenomena
such as m:n phase coupling and can detect the non-linear relation between the
observable and theoretical phases.

As a generative model we took a model of uni-directionally weakly coupled
phase oscillators

ϕ̇1 = ω1 + η1(t), (22)

ϕ̇2 = ω2 + a sin(ϕ2 − ϕ1) + η2(t),

where a is the coupling strength, ω1 = ω2 (see Fig. 5), and η1,2(t) are normally
distributed noises. We chose this form of the coupling function since it is used in

5All simulation codes can be found here https://gitlab.com/azayeld/edcmpc/
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DCM PC and allowed us to compare the two modelling components. A correct
reconstruction of a uni-directional coupling implies a zero coupling strength for
the first oscillator (A1,2 = 0) and a non-zero one for the second (A2,1 = a).

Using Eq. (22) we generated two different data sets: one containing the
theoretical phases and one the observable phases. The observable phases were
obtained by using the forward transformation function of the form Eq. (17) (see
Fig. 5).

Figure 5: The results of the reconstruction of the coupling strength of two uni-
directionally coupled phase oscillators using DCM for phase coupling (DCM
PC) and the extended version of it (eDCM PC). (a) Two types of data sets
were generated: with and without transformation. Thus, four cases denoted
with the numbers I, II, III, and IV were analysed in total. (b) and (c) show
the results of the reconstructed coupling strengths of the second and the first
oscillators, respectively. (d) and (e) show the results of the reconstruction of
the Fourier coefficients of the transformation function using eDCM PC for the
cases II and IV, respectively.

The coupling functions are reconstructed in DCM PC as real-valued Fourier
coefficients. Therefore, within the framework of DCM PC the model Eq. (22)
is represented as the coefficients of Eqs. (11) and (12):

as121 = A1,2 = a, as211 = A2,1 = 0.

All other coefficients are zero (acijn = 0). For the eDCM PC the model Eq. (22)
is represented as the coefficients of Eq. (13) and Eq. (14), i.e. of Eq. (23) (A):

b
(11)
12 = −c

(11)
12 = A1,2 = a,

b
(11)
21 = c

(11)
21 = A2,1 = 0,

and all other coefficients are zero:

a
(11)
12 = b

(11)
12 = 0,

a
(11)
21 = b

(11)
21 = 0.
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We generated 15 synthetic data sets with 20 trials each by integrating
Eq. (22) with random initial conditions. For integration we used the weak
converging second order Runge-Kutta type method for stochastic differential
equations (Platen, 1987; Honeycutt, 1992; Higham., 2001; Sauer, 2012). During
the integration of the system Eq. (22) we applied normally distributed noises
(η1(t) and η2(t)), each with amplitude of 0.05 and standard deviation of 0.1 to
both oscillators. The parameter values were ω1 = ω2 = 1.0rad/s and a = 0.2.
Every trial lasted 4 s and had 80 time points. The real-valued Fourier coeffi-
cients of the transformation (Eq. (16) and, respectively, of Eq. (24)) were chosen

as α
(1)
1 = 0.1, β

(1)
1 = 0.15, α

(1)
2 = 0.05, β

(1)
2 = 0.1. As mentioned above, DCM

PC and eDCM PC were applied to two types of data sets – with and without
transformation – to reconstruct the coupling functions. Therefore, four cases
were analysed in total (see Fig. 5(a)). They are denoted with the numbers I, II,
III, and IV as shown in the Figure.

As a result of the reconstruction, for every data set we obtained the values
of the coupling strengths A2,1 and A1,2, presented as box plots in Fig. 5 (b)
and (c). For DCM PC the coupling strengths are the values of asij1, whereas for

eDCM PC they are b
(11)
ij and −c

(11)
ij .

From the data set of theoretical phases (the cases I and II), both versions of
DCM reconstructed the correct values of the coupling strength A2,1 (Fig. 5(b)).
Moreover, the coupling strength A1,2 was also estimated as zero by eDCM PC
(Fig. 5 (c), the cases II and IV). For DCM PC we set the network structure as
uni-directional. Therefore, in Fig. 5(c) no values of A1,2 are shown for the cases
I and III.

DCM PC is designed for this case, namely to reconstruct the models Eq. (22)
from the theoretical phases. The extended DCM PC, however, is designed for
general cases to reconstruct the network structure from observable phases and
without assumptions on the transformation function (presence or absence of it).
Nevertheless, for the data set of the theoretical phases eDCM PC estimates the
values of the Fourier coefficients of the transformation function as zero, i.e. no
transformation present (Fig. 5(d)).

Crucial results were obtained for the case III: for observable phases, DCM
PC gave quite variable results for the different data sets (Fig. 5(b)). By contrast,
eDCM PC estimated the correct values of the coupling strength (the case IV in
Fig. 5(b)). Moreover, the values of the Fourier coefficients of the transformation
function were also correctly estimated by eDCM PC (Fig. 5(e)).

3.2 Neural mass model

In this section we present the results of the second test. In contrast to the test
presented in the previous section, we generated a synthetic data set that is a
good approximation of an EEG signal based on the neural mass model developed
by Jansen and Rit (1995). The system of equations and the parameter values of
the neural mass model are given in Appendix C. This model was used by David
and colleagues (2004) to evaluate different connectivity measures. Similarly,
Vindiola et al. (2014) used two non-linearly coupled neural mass models of this
type to analyse different EEG phase synchronization measures. Moreover, the
neural-mass model of Jansen-Rit is used in the modelling component of the
DCM for evoked responses (David et al., 2006).
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Figure 6: The results of the reconstruction of the coupling functions for different
coupling configurations between two neural mass models.

We considered two coupled regions with three coupling cases as shown in
Fig. 6 (a), (f), and (m). The parameters of the neural mass models of the
different regions were set to generate oscillatory signals with different frequencies
(f1 = 9.233 Hz and f2 = 16.160 Hz). Examples of the generated time series are
presented in Appendix D. These synthetic EEG signals were then used to obtain
the observable phases by means of the Hilbert transformation. From these data
sets of observable phases for different coupling cases we then estimated the
coupling functions between these regions using the extended DCM PC. In all
cases, the coupling parameters of DCM were set to a bidirectional coupling.
Thereby, we wanted the extended DCM PC to detect the absence of one of the
couplings in the first (a) and the second case (f) in Fig. 6.

For every coupling case, we generated 15 trials with a temporary activated
coupling to simulate the transient synchronization. Every trial started with
random initial conditions and with deactivated coupling between the regions.
After 0.5 s of the transient time period the couplings were activated for 0.3 s with
a given coupling configuration (Fig. 6 (a), (f), or (m)). Then the system was
simulated again for another 0.5 seconds with deactivated coupling (see Fig. 8 in
Appendix D). As in the previous section, for the numerical integration of the
coupled Jansen-Rit neural mass models, we used the weak converging second
order Runge-Kutta type method for stochastic differential equations (Platen,
1987; Honeycutt, 1992; Higham., 2001; Sauer, 2012).

Within the parameter ranges used in our simulations, the system of two
coupled neural mass models has several stable limit cycles, i.e. is multistable
(Spiegler et al., 2010; Ahmadizadeh et al., 2018). Therefore, we used a balanced
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input to the regions to ensure that the system remains in the vicinity of the same
limit cycle. Without coupling, the regions received a noisy input with a given
mean and standard deviation (see C). When the coupling was activated, the
balanced input was achieved by setting the constant part and the variance of the
variable part of the overall input to the regions to remain the same. Thus, the
mean and the standard deviation of the input noise of one region were reduced
with respect to the mean and standard deviation of the input from the other
region. This scheme is similar to the one used by David and Friston (2003).

After extracting the observable phases with the Hilbert transformation we
cut out the transient parts of the trials. Thus, only the time period with acti-
vated coupling was used to reconstruct the coupling functions.

To assess the number of terms of the Fourier series in Eqs. (9) and (14), we
first performed a spectral analysis on the data sets (see Appendix E). According
to the results of this analysis, we took Nq = 1 in Eq. (14) and Nρ = 2 in Eq. (9)
as an approximation of the coupling function qij and the forward transformation
function ρi. Therefore, for every region four real-valued coefficients of the cou-
pling function (Eq. (23)) and four real-valued coefficients for the transformation
function (Eq. (24)) were estimated.

The results of the reconstruction are shown in Fig. 6, where the panels are
lined-up with respect to the coupling configurations shown in (a), (f), and (m).
The coupling functions are presented as surfaces and the columns correspond
to the regions: (b), (g), (n) are the coupling functions for the first region and
(c), (h), (o) the ones for the second region (cf. the numbers above the panels
in Fig. 6), respectively. Similarly, the forward transformation functions ρ1(ϕ1)
and ρ2(ϕ2) are presented for the different regions in columns: (d), (i), (p) are
for the first region and (e), (l), (q) for the second region.

As can be seen, the extended DCM for phase coupling was able to detect the
directionality of the coupling: for the cases when the connections were absent
(Fig. 6 (a) and (f)) the coupling functions for the second (c) and for the first
oscillators (g) were almost zero. By contrast, for the existing connections the
coupling functions were not zero (Fig. 6 (b), (h), (n) and (o)). Moreover, the
form of the reconstructed coupling functions suggests that qij(ϕi, ϕj) is not a
function of phase differences ϕj − ϕi: the surface is not a wave function along
the diagonal ϕj − ϕi. However, for a stronger coupling strength the function
qij(ϕi, ϕj) approached sin(ϕj − ϕi) (cf. Fig. 6 (h) and (o)), which is the form
of the coupling assumed in the theory of synchronization of weakly coupled
oscillators and in the DCM for phase coupled data (Penny et al., 2009) (see
Eq. (12)).

In all considered coupling configurations and for both regions the forward
transformation functions were not constant (ρ(ϕ) 6= 1) (Fig. 6 (d), (i), (p),
(e), (l), and (q)). This indicates that the oscillations generated by the neural
mass model have non-sinusoidal form even without coupling (Fig. 6 (e) and (i)).
Similar conclusions can be made from the time course of the derivatives of the
observable phases (see Fig. 8 and the description in Appendix D). Furthermore,
ρ(ϕ) changed with respect to the coupling, i.e. the coupling changed the form
of the limit cycle.
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4 Discussion

In this work we extended the modelling component of DCM for phase-coupled
data so that it can work with phase variables obtained from experimentally
measured observables.

DCM for phase-coupled data with the extended modelling component pre-
sented in this work differs from Penny et al. (2009) in several critical aspects.
First of all, in the evolution equations Eq. (13)different natural frequencies of the
oscillators are assumed. Therefore, the coupling function qij is approximated by
two dimensional Fourier series, thereby making it possible to apply the model
to analyse cross-frequency couplings and consider the n:m phase locking cases.

The main extension is related to the transformation function implemented
as non-linear observation equations in the modelling component. In contrast
to Kralemann et al. (2008), where the observable phases are transformed to
the theoretical ones, our approach does the opposite: we estimate the forward
transformation function, which finds the observable phases from the theoretical
ones. This difference results in a remarkable effect when applied to real data.
The inverse transformation (the transformation from protophase to phase) intro-
duced by Kralemann et al. (2008) estimates from arbitrarily defined observable
phases a unique phase variable due to a strict condition on the distribution of
the true (theoretical) phases. By contrast, the forward transformation has no
such explicit condition. Therefore, no unique fitting solution could occur for
the observable phases obtained from the noisy data. In the Bayesian framework
implemented in DCM, this means that the free energy function has several local
maxima. However, only one maximum of the free energy, or equivalently, only a
specific set of parameter values satisfies the condition on the distribution of the
true (theoretical) phases. In our extension we solve this issue by calculating an
initial approximation of the distribution density of the observable phases, i.e.
the function σ(θ). Using this initial approximation, we define the initial priors
for the parameters of the forward transformation function ρ(ϕ).

Another difference of our approach compared to Kralemann et al. (2008) is
that the parameter values of the transformation function are estimated together
with the parameter values of the coupling function. Kralemann and colleagues
(2008) also presented a method with a simultaneous estimation of the parame-
ter values for two oscillators by means of solving the nonlinear equation of the
Fourier coefficients. The convergence condition there was the minimum of the
mean square error. This is equivalent to the condition of the maximum likeli-
hood under the assumption that the observables are normally distributed. This
differs from the Bayesian approach used in DCM (Friston, 2002; Friston et al.,
2002a,b, 2007b), where the assumption is that not only the observables, but also
the parameters are random variables with Gaussian distribution. Moreover, the
Bayesian model comparison allows to compare different network configurations
using the Bayesian model selection (David and Friston, 2003).

In this work we have demonstrated that it is necessary to distinguish the
observable phase from the theoretical one. In the reconstruction of known cou-
pling functions of two uni-directionally coupled phase oscillators (see Fig. 5) the
obtained values of the coupling strengths were estimated wrongly if the observ-
able phases were considered as theoretical ones (Fig. 5(b) III). Certainly, this
error occurred due to the definition of the coupling function as a function of
phase differences in the original DCM for phase coupling (see Eq. (11)). How-
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ever, even if the coupling function is defined in a general form, the reconstructed
function can be estimated only with a significant error, as shown in Fig. 2(i)
and (l).

The example using the neural mass model, which simulates real experimental
measurements, revealed that the observables of the system, and, respectively,
the observable phases have non-linear distributions (Figs. 6 and 8). Moreover,
it was shown that the distribution is non-linear even without coupling (ρi(ϕi) 6=
const for (e) and (i) in Fig. 6) and that the coupling changes the form of the limit
cycle. The latter aspect is not considered in the framework of weakly coupled
oscillators, since it does not account for changes in the amplitude. However,
by introducing the transformation function we can eliminate the effect of these
changes of the limit cycles.

A wrong estimation of the coupling strength is caused by the fact that gen-
erally the observable phase itself is distributed non-uniformly, which is unre-
lated to the coupling. Recent works addressed this problem. For example
Scheffer-Teixeira and Tort (2016) showed that waveform asymmetry and fre-
quency harmonics may generate artificial n:m phase-locking. Belluscio and
colleagues (2012) considered the asymmetry of hippocampal theta waves and
suggested a method to define phase by identifying the waveform-based phase of
spiking to make the estimation of cross-frequency phase-phase coupling more
reliable.

The non-uniform distribution of the observed phase variables is an issue not
only in cross-frequency phase coupling (CFC), but also in measuring the con-
nectivity by means of the phase-to-amplitude coupling (PAC). Lozano-Soldevilla
et al. (2016) showed that non-sinusoidal wave morphologies of neurophysiolog-
ical oscillations can produce spurious couplings between amplitude and phase.
Similarly, van Driel, Cox, and Cohen (2015) demonstrated that non-uniform
phase angle distributions can, under specific circumstances, produce statistical
errors and uninterpretable results when using PAC. The authors suggested a
new measure called debiased PAC (dPAC). The logic behind this measure is to
shift the phase angle distribution prior to computing PAC such that the distri-
bution has a mean of zero, thereby effectively ”uniformizing” the distribution of
the phase angles. In order to solve this issue it might be necessary to introduce
a transformation function for PAC, in a manner similar to the coupled phase
oscillators discussed by Kralemann et al. (2008) and used in the current work.

The extension of DCM for phase coupling can be applied in different bi-
ological systems. The main condition is weakness of the coupling. The weak
coupling can be visualized as a wide distribution of the data points on the phase-
phase surface (torus, see Fig. 1 (b)). This can be easily achieved in the case of
transient synchronization.

The application of the results of this work is not restricted to measurements
of brain activity, such as EEG, MEG, LFP, and iEEG only. The system of inter-
est can be any network of weakly coupled self-sustained oscillators. Moreover,
the activity of the network could also stem from different origins. For example,
in experiments with a periodic input one could consider the external drive as
an oscillator and analyse its influences on individual nodes of a network. There-
fore, the extended DCM for phase-coupled data might be used to study the
interaction in various classes of networks of weakly coupled phase oscillators.

The extension to DCM presented here should be used whenever there is a
distinct asymmetry of the distribution of the measured phase. Moreover, as it

21



was shown in the simulation of the coupled neural mass models, in the case of
strong coupling the phase interaction function approaches a periodic function
of the phase differences (Eq. (12)). Therefore, it is preferable to use DCM
for phase-coupled data presented by Penny and colleagues (2009) for uniform
distributed observable phase (ρ(ϕ) ≈ 1) and for strong coupling.

Despite the shown advantages, the new modelling component presented in
this work has also disadvantages. The simultaneous estimation of the param-
eters of the coupling and the transformation function increases the number of
parameters per region, which reduces the speed of their estimation procedure.
Moreover, since the values of the parameters of the transformation function are
calculated in every estimation step, it requires an additional operation: update
of the initial values of the theoretical phases. Optimization of the speed of
the estimation procedure and of the Bayesian inference for this specific type of
model is a topic of future work.
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A The model with real-valued Fourier coefficients

In the numerical simulations we present Eqs. (14), (16), and (17) with real-
valued Fourier coefficients for computational expediency.

The coupling function between the region i and j Eq. (14) is given by

qij(ϕi, ϕj) =

Nq
∑

n=1

Nq
∑

m=1

[

a
(n,m)
ij cos(nϕi) cos(mϕj) + b

(n,m)
ij cos(nϕi) sin(mϕj)

+ c
(n,m)
ij sin(nϕi) cos(mϕj) + d

(n,m)
ij sin(nϕi) sin(mϕj)

]

, (23)

where a
(n,m)
ij , b

(n,m)
ij , c

(n,m)
ij , d

(n,m)
ij are the real-valued Fourier coefficients. Ac-

cording to the assumptions (n 6= 0 and m 6= 0) made in Section 2.6.2, the
upper indexes of these coefficients change from 1 to Nq. Thus, every coupling
coefficient (matrix) between any pair of regions i and j is of size Nq ×Nq.

The forward transformation function Eq. (16) with real-valued Fourier coef-
ficients reads

ρ(ϕi) = 1 +

Nρ
∑

k=1

[

α
(k)
i cos(nϕi) + β

(k)
i sin(nϕi)

]

, (24)
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where α
(k)
i and β

(k)
i are the Fourier coefficients, each of the size Nq for every

region. The forward transformation function (Eq. (17)) is then

θi = ϕi +

Nρ
∑

k=1

1

k

[

α
(k)
i sin(nϕi)− β

(k)
i cos(nϕi) + β

(k)
i

]

. (25)

B Calculation of the probability distribution den-

sity for short trials

The probability distribution density of a 2π periodic phase variable can be esti-
mated with conventional methods if the system is observed for a long period of
time. For a set of short period observations, such as short trials, the estimation
of the distribution is accurate only if the observation time has full periods as
shown in Fig. 7: for linearly growing phase ϕ (a) the distribution density is
uniform (b), whereas for non-linearly growing phase θ (f) it is not (g). If we
observe no full periods of oscillations, as shown in Figs. 7 (c) and (h), then the
estimated distribution appears to be wrong ((d) and (i)). From the distribution

Figure 7: Estimation of the probability distribution density for short trials.

density of the linearly growing phase ϕ we can calculate its envelope η(ϕ) (red
solid line in Fig. 7 (d)) as:

η(ϕ) =

{

k+1
k+(ϕ1−ϕ0)/(2π)

, if ϕ ∈ (ϕ0, ϕ1],
k

k+(ϕ1−ϕ0)/(2π)
, otherwise,

where ϕ0 and ϕ1 are the initial and the final values of ϕ in the considered time
course, respectively. By dividing the distritubtion density of ϕ (Fig. 7(d)) by
η(ϕ) we obtain the correct distribution density as shown in Fig. 7 (e). Similarly,
we can calculate η(θ) for the non-linearly growing phase θ (Figs. 7(h) and (i)):

η(θ) =

{

k+1
k+(θ1−θ0)/2π

, if θ ∈ (θ0, θ1],
k

k+(θ1−θ0)/2π
, otherwise,

where θ0 and θ1 are the initial and the final values of θ as shown in Fig. 7(h).
After dividing the distribution density of the non-linearly growing phase θ
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(Fig. 7(i)) by η(θ) the resulting distribution density is the correct one (com-
pare (g) and (j) in Fig. 7).

The presented method is valid if the derivative of the phase is always positive.
This is equivalent to the condition that requires a weak coupling ‖qi,j‖ ≪ 1 and
‖P (k)‖ ≪ 1 in Eq. (17).

C Coupled Jansen-Rit neural mass model

Every region in the Jansen-Rit neural mass model consists of three blocks – two
excitatory and one inhibitory. The regions are connected via delay blocks. The
system of equations for region i reads

ẏ
(0)
i = z

(0)
i ,

ż
(0)
i = AiaiS(y

(1)
i − y

(2)
i )− 2aiz

(0)
i − a2i y

(0)
i ,

ẏ
(1)
i = z

(1)
i ,

ż
(1)
i = Aiai



pi(t) + C2S(C1y
(0)
i ) +

Ns
∑

j=1,j 6=i

Kjy
(d)
j





− 2aiz
(1)
i − a2i y

(1)
i ,

ẏ
(2)
i = z

(2)
i ,

ż
(2)
i = Bibi

(

C4S(C3y
(0)
i )

)

− 2biz
(2)
i − b2i y

(2)
i ,

ẏ
(d)
i = z

(d)
i ,

ż
(d)
i = Aia

(d)S(y
(1)
i − y

(2)
i )− 2a(d)z

(d)
i − (a(d))2y

(d)
i , (26)

where the lower indices correspond to the regions, and the upper ones to the
different blocks ((0) and (1) to excitatory blocks, (2) to inhibitory blocks, (d)
to delay blocks), S(x) is a sigmoid function

S(x) =
2e0

1 + exp(r(V0 − x))
.

We simulated two coupled regions (Ns = 2). The output signals of the regions

are Y1 = y
(1)
1 − y

(2)
1 and Y2 = y

(1)
2 − y

(2)
2 . According to (Jansen and Rit, 1995)

we use the following relation between the parameters: C1 = C, C2 = 0.8C,
C3 = C4 = 0.25C, where C = 135. The values of all other parameters are
a(d) = 30, A1 = 1.625, a1 = 50, B1 = 29.333, b1 = 66.667, A2 = 3.250, a2 = 100,
B2 = 44, b2 = 100, r = 0.56, V0 = 6.0, e0 = 2.5. As inputs to the regions we
used pi(t) = 〈p1(t)〉+ p̃1η(t), where η ∼ N(0, s2pi

) is a normally distributed noise
with the amplitudes p̃1 = p̃2 = 0.25 and the standard deviations sp1

= sp2
= 1.0.

Without coupling, the inputs have the means 〈p1(t)〉 = 220, 〈p2(t)〉 = 220 and
the system generated oscillations with the mean frequencies f1 = 9.233 Hz and
f2 = 16.160 Hz.
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D Simulated time series and observables of the

neural mass model

The time series generated by the system of two mutually coupled neural mass
models (Eq. (26)) are presented in Fig. 8. The left panels ((a),(f), and (m))
show the corresponding coupling configurations, which are similar to those pre-
sented in Fig. 6. In the middle panels ((b),(d),(g),(i),(n), and (p)) examples
of one trial of generated time series of the first (y1) and the second (y2) re-
gion are shown. The gray areas (t ∈ [0.5, 0.8]) denote the time period when
the couplings between regions were activated. The derivatives of the observable
phases (θ1 and θ2) obtained from the signals y1 and y2 using Hilbert transfor-
mation are shown in the right panels ((c),(e),(h),(l),(o),(q)). These derivatives
consist of an oscillatory activity and random fluctuations. For all regions and
coupling configurations the oscillatory activities have the same frequencies as
the corresponding time series. This indicates that the derivatives dθi/dt de-
pend on the observable phases θi (i = 1, 2). When a region does not receive
an input from the other region (Fig. 8(e) and (h))) the oscillatory activity of
the derivative dθi/dt is equivalent to the forward transformation function ρi
times the intrinsic frequency ωi (see Eq. (15) and Fig. 6). In other cases the
oscillation of the derivatives are modulated by the input from the other region
(Fig. 8(c),(l),(o),and (q)).

E Spectral analysis of the neural mass model

From the signals generated by the system of two mutually coupled neural mass
models we obtained the observable phases by means of the Hilbert transforma-
tion. Then the derivatives of the observable phases were approximated as

θ̇i = 〈θ̇i〉+

Nr
∑

j=1,j 6=i

F
(n,m)
ij ei(nϕi+mϕj). (27)

To find the values of F
(n,m)
ij , we calculated first the derivatives θ̇i for every time

point and subtracted the mean. The resulting data points were interpolated by
a surface using the nearest neighbor algorithm. Then we used the second order

fast Fourier transformation to calculate the values of F
(n,m)
ij for the interpolated

surface. The absolute values of the coefficients are presented in Fig. 9.
The coefficients at n = 0 are related to the Fourier coefficients of the for-

ward transformation function ρ(ϕ) (times the mean frequency). The maximum
number of the Fourier terms Nρ for ρ(ϕ) in Section 3.2 we chose as the maximal

value of |m| for which the coefficients F
(n=0,m)
ij are significantly larger than zero.

For the first region it is |m| = 1 (Fig. 9 (a)) and is |m| = 2 for the second region
(Fig. 9 (b)). Therefore, we set Nρ = 2.

Similarly, we found the maximum number of the Fourier terms of the cou-
pling function Nq. Here we considered the maximal values of |m| and |n| for

which the coefficients F
(n,m)
ij |n6=0,m 6=0 are non zero. As one can see in Figs. 9 (a)

and (b) the coefficients F
(−1,1)
12/21 and F

(1,−1)
12/21 are significantly larger than zero.

Therefore, we set Nq = 1 for the reconstruction of the coupling function in
Section 3.2.
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Figure 8: Example of the time series of the system of two coupled neural mass
models (middle panels) for different coupling configurations (left panels) and the
corresponding derivatives of the observable phases (right panels). Gray areas
indicate the time interval when the couplings between regions were temporarily
activated.
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Figure 9: The norm of the Fourier coefficients of the derivatives of the observ-
able phases obtained from the simulation of two mutually coupled neural mass
oscillators (the case (c) in Fig. 6).
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